
基本信息:
邮箱:385405060@qq.com
地址:湖南省长沙市韶山南路498号
个人简介:
艾玮,女,博士,副教授,硕士生导师。
任职情况:
2018年1月-至今,中南林业科技大学计算机与数学学院,副教授。
主要研究方向:
人工智能、数据挖掘,大模型、多模态融合、图谱对齐。
科研情况:
近年来,主持国家自然科学基金青年项目 1 项,湖南省自然科学基金面上项目 1 项,湖南省教育厅科学研究优秀青年项目 1 项。本人一直从事数据挖掘、深度学习、自然语言处理领域的研究工作,先后以一作或者通信作者在国家顶级期刊和会议上发表高水平研究论文 20 多篇,在文本数据、图结构数据和异构多模态数据挖掘方面具有丰富的研究与工程实践经验。涉及的主要期刊和会议有:IEEE TPDS、IEEE TKDE、IEEE TNNLS、IEEE/ACMT-ASLP、IEEE TAI、AAAI、ICDCS,其中 CCF A 类论文 3 篇,CCF B 类论文 3 篇,影响因子大于 10 的论文 1 篇。
代表性学术成果:
[1] Wei Ai, Canhao Xie, Tao Meng, Jayi Du, Keqin Li. A D-truss-equivalence Based
Index for Community Search over Large Directed Graphs[J]. IEEE Transactions on
Knowledge and Data Engineering, 2024.
[2] Wei Ai, Yuntao Shou, Tao Meng, Keqin Li. DER-GCN: Dialog and Event
Relation-Aware Graph Convolutional Neural Network for Multimodal Dialog
Emotion Recognition[J]. IEEE Transactions on Neural Networks and Learning
Systems, 2024.
[3] Wei Ai, Jianbin Li, Ze Wang, Yingying Wei, Tao Meng, Keqin Li. Contrastive
multi-graph learning with neighbor hierarchical sifting for semi-supervised text
classification[J]. Expert Systems with Applications, 2025, 266: 125952.
[4] Wei Ai, Yingying Wei, Hongen Shao, Yuntao Shou, Tao Meng, Keqin Li.
Edge-enhanced minimum-margin graph attention network for Short text classification[J]. Expert Systems with Applications, 2024, 251: 124069.
[5] Tao Meng, Yuntao Shou, Wei Ai*, Nan Yin, Keqin Li. Deep imbalanced learning
for multimodal emotion recognition in conversations[J]. IEEE Transactions on
Artificial Intelligence, 2024.
[6] Tao Meng, Fuchen Zhang, Yuntao Shou, Hongen Shao, Wei Ai*, Keqin Li.
Masked graph learning with recurrent alignment for multimodal emotion recognition
in conversation[J]. IEEE/ACM Transactions on Audio, Speech, and Language
Processing, 2024.
[7] Tao Meng, Yuntao Shou, Wei Ai*, Jiayi Du, Haiyan Liu, Keqin Li. A
multi-message passing framework based on heterogeneous graphs in conversational
emotion recognition[J]. Neurocomputing, 2024, 569: 127109.
[8] Shou Y, Meng T,Wei Ai*, et al. Conversational emotion recognition studies based
on graph convolutional neural networks and a dependent syntactic analysis[J].
Neurocomputing, 2022, 501: 629-639.